Structural studies of endopolygalacturonase-resistant fragments of an antiulcer pectin from the roots of *Bupleurum falcatum* L. †,*

Masumi Hirano, Hiroaki Kiyohara, Tsukasa Matsumoto and Haruki Yamada **

Oriental Medicine Research Center of the Kitasato Institute, Minato-ku, Tokyo 108 (Japan)

(Received January 4th, 1993; accepted May 15th, 1993)

ABSTRACT

The endo- α -(1 \rightarrow 4)-polygalacturonase-resistant fractions (PG-1, PG-2, and PG-3) from an antiulcer pectin (Bupleuran 2IIc), isolated from the roots of Bupleurum falcatum L., were further analysed by lithium degradation. The results indicated that PG-1 contained a small proportion of long, branched arabinosyl chains and a large proportion of short, neutral oligosaccharide chains. GLC-MS analysis showed that, after methylation the short, neutral oligosaccharide fraction consisted of at least 22 kinds of di- to tetra-saccharide alditols, such as Gal- $(1 \rightarrow 4)$ -Rha-ol (a major component), Ara- $(1 \rightarrow 4)$ -Rha-ol, Glc- $(1 \rightarrow 4)$ -Rha-ol, Ara \rightarrow Ara \rightarrow Ara \rightarrow Ara-ol, and Ara \rightarrow Ara \rightarrow Ara \rightarrow Ara-ol (minor components) in addition to heteroglycosyl alditols. After deesterification, PG-2 and PG-3 were digested with endo- α -(1 \rightarrow 4)-polygalacturonase again, and the enzyme-resistant intermediate size fraction (PG-2') was purified. Component sugar analysis indicated that PG-2' contained 2-Me-Fuc, 2-Me-Xyl, apiose (Api), aceric acid (AceA), 3-deoxy-D-lyxo-heptulosaric acid (Dha), and 3-deoxy-D-manno-2-octulosonic acid (Kdo) in addition to Rha, Fuc, Ara, Xyl, Man, Gal, Glc, GalA, and GlcA. Lithium degradation of PG-2' gave mainly a pentosyl \rightarrow 6-deoxyhexosyl \rightarrow 6-deoxyhexosyl \rightarrow pentitol fragment, with some neutral di- and tri-saccharide alditols, including a pentosyl \rightarrow deoxyhexitol. Methylation analysis of these degradation products indicated that they contained terminal Rha, Araf, Fuc, Xyl, and Gal, 4-linked Rha, 3-linked Fuc, 3-linked Ara, and 3'-linked Api. Bupleuran 2IIc was eluted as essentially a single peak on gel filtration on Sepharose CL-6B. The neutral sugar content of the successive fractions increased with increasing molecular weight, but each fraction also contained, in addition to Rha, Ara, and Gal, 2-Me-Fuc, 2-Me-Xyl, and Api.

INTRODUCTION

An antiulcer polysaccharide, Bupleuran 2IIc, isolated^{2,3} from the roots of *Bupleurum falcatum* L. (Japanese name, Saiko) has been characterized¹ as a pectin, primarily ($\sim 86\%$) galacturonan in character and so composed mainly of (1 \rightarrow 4)-linked α -p-GalA residues. Some (1 \rightarrow 4)-linked α -galacturono-tetra- and

[†] Dedicated to Professor C.E. Ballou.

^{*} Studies on antiulcer pectic polysaccharides from Bupleurum falcatum, Part V. For Part IV, see ref 1.

^{**} Corresponding author.

-penta-saccharide units possessed one and three methyl-ester groups, respectively, and some $(1 \rightarrow 4)$ -linked α -galactosyluronic units had GalA side chains at position 2 or 3. Endo- α -(1 \rightarrow 4)-polygalacturonase digestion indicated that Bupleuran 2IIc gave small proportions of three enzyme-resistant fractions (PG-1, PG-2 and PG-3; yield 8.6, 2.3, and 3.3%, respectively) together with a large proportion of oligogalacturonides (PG-4). Base-catalysed β -elimination and partial acid hydrolysis suggested that PG-1 consisted of a rhamnogalacturonan core with neutral carbohydrate chains. PG-2 and PG-3 contained 2-O-methylfucose, 2-O-methylxylose, apiose (Api), aceric acid (AceA), and 3-deoxy-D-manno-2-octulosonic acid (Kdo) in addition to rhamnose, arabinose, galactose, galacturonic acid, and glucuronic acid as their component sugars. Since endopolygalacturonase digestion of Bupleuran 2IIc reduced² the antiulcer activity, it was suggested that the galacturonan region participates in the expression of this activity. Orange polygalacturonic acid, however, showed² only moderate activity, and some pectins showed no activity. Therefore, other structural features of Bupleuran 2IIc may contribute to its antiulcer properties.

We now report further on the structures of the endo- α -(1 \rightarrow 4)-polyg-alacturonase-resistant regions (PG-1-PG-3) in Bupleuran 2IIc.

EXPERIMENTAL

Materials.—The roots of B. falcatum L. were purchased from Uchida Wakanyaku Co. Ltd. Bio-Gel P-10 (200–400 mesh) and P-30 (200–400 mesh) were obtained from Bio-Rad, Sepharose CL-6B from Pharmacia, and Sep-Pak C_{18} cartridges from Waters Associates. Pectinase from Aspergillus niger was purchased from Sigma, and endo- α -(1 \rightarrow 4)-polygalacturonase [(1 \rightarrow 4)- α -D-galacturonan glycanohydrolase; EC 3.2.1.15] was purified using the procedure of Thibault and Mercier⁴. The acidic polysaccharide fraction (BR-2) was prepared³ from the roots of B. falactum L. by a hot-water extraction and precipitations with EtOH and Cetavlon (cetyltrimethylammonium bromide), and Bupleuran 2IIc was purified from BR-2 by anion-exchange chromatography on DEAE-Sepharose CL-6B as described^{2,3}.

General.—Carbohydrate and uronic acid in column eluates were assayed by the phenol— H_2SO_4 (ref. 5) and m-hydroxybiphenyl methods⁶, respectively. Polysaccharides were hydrolysed with 2 M CF₃CO₂H for 1.5 h at 121°C, and TLC of hydrolysates was performed on cellulose (Merck) with 5:5:1:3 EtOAc-pyridine—AcOH-water. Reducing sugars were detected with alkaline silver nitrate⁷. Neutral sugars and uronic acids in hydrolysates were converted⁸ into the corresponding alditol acetates, and analysed by GLC in a Hewlett-Packard model 5890 series II gas chromatograph equipped with an SP-2380 capillary column $(0.2-\mu m \text{ film thickness}, 0.25 \text{ mm i.d.} \times 30 \text{ m}$, Supelco), and temperature-programmed as follows: 60° C for 1 min, $60 \rightarrow 215^{\circ}$ C (30° C/min), $215-250^{\circ}$ C (8° C/min), and 250° C for 5 min. Molar ratios were calculated from the peak areas and response factors

determined for the flame-ionization detector. 3-Deoxy-D-lyxo-heptulosaric acid (Dha) and Kdo were each converted to carboxyl-reduced alditol acetates according to the method of Stevenson et al. For the determination of Dha and Kdo polysaccharides were hydrolysed with 0.1 M CF₃CO₂H for 1 h at 100°C, and the hydrolysates were reduced with NaBD₄. The products were subjected to second acid treatment (2 M CF₃CO₂H) for lactonization, and a second reduction with NaBD₄. For the analysis of Dha, the products were treated again with 2 M CF₃CO₂H, and reduced with NaBD₄. Acetylation gave the alditol acetates of Kdo and Dha, which were analysed by GLC-MS using an SP-2380 capillary column as described. HPLC was performed on a Waters Model ALC/GPC244 equipped with columns (0.76 × 50 cm each) of Asahi-Pak GS-510 + GS-320 (Asahi Chemical Industry Co. Ltd.) and developed with 0.2 M NaCl. Molecular weights of polysaccharides were estimated from a calibration curve of the elution volumes of standard pullulans (P-400, 200, 100, 50, 20, and 5, Showa Denko Co. Ltd.).

Preparation of PG-1 and PG-2'.—Bupleuran 2IIc was digested¹ with endo- α -(1 \rightarrow 4)-polygalacturonase for 4 days at 37°C in 50 mM acetate buffer, pH 4.2. The products were fractionated¹ on a column of Sephadex G-50, to give PG-1, PG-2, PG-3, and PG-4. After the mixture of PG-2 and -3 was deesterified, the products were digested with the polygalacturonase again, and refractionated on a column of Bio-Gel P-10 in 50 mM acetate buffer, pH 5.5, to give PG-2,3-1 and PG-2,3-2 in the void volume and near the void volume, respectively. PG-2,3-1 and PG-2,3-2 were each rechromatographed on the same column to give PG-1' (from PG-2,3-1) and PG-2' (from PG-2,3-2).

Treatment of PG-1 and PG-2' with lithium in ethylenediamine.—The procedure was performed according to the method of Lau et al.¹⁰ To a solution of PG-1 (20 mg) or PG-2' (1 mg) in ethylendiamine (4 or 1 mL) was added lithium wire, the mixture was stirred for 1 h at room temperature, and the reaction was stopped by the addition of water. The solvent was evaporated, the residue was dissolved and desalted with AG 50W-X8 (H⁺) resin, and then the products were reduced with NaBH₄.

Methylation analysis.—Samples (500 μg) were methylated once (Hakomori)¹¹ in order to prevent¹² β-elimination, but methylsulphinylcarbanion was added two or three times until conversion of the polysaccharide into a polyalkoxide was complete as checked¹³ by using triphenylmethane. The methylated polysaccharides were recovered by a Sep-pak C₁₈ cartridge by the procedure of Waeghe et al.¹⁴, except that samples were eluted with EtOH. Uronic acid in methylated polysaccharides was reduced^{14,15} with NaBD₄ in 7:3 tetrahydrofuran (THF)–EtOH at room temperature for 18 h followed by incubation at 80°C for 1 h. Each methylated polysaccharide was hydrolyzed with 2 M CF₃CO₂H for 1.5 h at 121°C, and the products were reduced with NaBD₄ then acetylated. The resulting methylated alditol acetates were analysed by GLC and GLC–EIMS with an SP-2380 capillary column. GLC and EIMS were performed on a Hewlett–Packard model 5890A gas chromatograph and 5970B mass-selective detector, respectively. The carrier gas

was He (0.9 mL/min in GLC and 0.5 mL/min in GLC-MS), and the temperature programs were 60°C for 1 min, $60 \rightarrow 150$ °C (30°C/min), 150-250°C (1.5°C/min), and 250°C for 5 min. Methylated alditol acetates were identified by their fragment ions and relative retention times in GLC, and their molar ratios were estimated from the peak areas and response factors¹⁶ determined for the flame-ionization detector.

GLC-EI- and CI-MS of methylated oligosaccharide alditols.—Solutions of methylated oligosaccharide-alditols in acetone were injected directly into an SP-2380 capillary column (0.2- μ m film thickness, 0.25 mm i.d.×15 m, Supelco) operated under a temperature program of 100°C for 1 min, 100 \rightarrow 150°C (30°C/min), and 150 \rightarrow 270°C (2°C/min). CIMS (isobutane) was performed on a Jeol DX-300 mass spectrometer, and EIMS was carried out on a Hewlett-Packard model 5970B mass-selective detector. CIMS^{17,18} and EIMS fragment ions [A, J, and alditol (ald)]¹⁹ were used to determine the structures of the methylated oligosaccharide alditols.

RESULTS

Analysis of neutral carbohydrate chains in PG-1.—The endo- α - $(1 \rightarrow 4)$ -polygalacturonase-resistant fractions PG-1 from Bupleuran 2IIc has been suggested to consist of a rhamnogalacturonan core, and it was also rich in neutral sugars. In order to analyse the structures of the neutral carbohydrate chains, PG-1 was subjected to degradation mediated by lithium in ethylenediamine. After treatment with NaBH₄ to complete the reduction, the resulting oligosaccharide alditols were separated by gel filtration on Bio-Gel P-10 into a fraction (NS-1) eluting in the void volume, an intermediate fraction (NS-2), and a fraction (NS-3) of low molecular weight (Fig. 1). NS-1 still contained glycosyluronic acid residues even after lithium degradation, whereas NS-2 and NS-3 lacked uronic acid. Therefore, NS-2 and NS-3 were further studied. Methylation analysis showed that

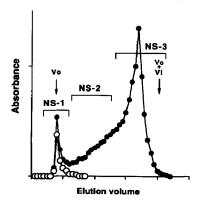


Fig. 1. Gel filtration on Bio-Gel P-10 of products from PG-1 by lithium degradation: ●, carbohydrate (490 nm); ○, uronic acid (520 nm); V₀, void volume; Vᵢ, internal volume.

TABLE I
Methylation analysis of the products obtained from PG-1 by lithium degradation

Residue	Positions of	Linkages	Compositi	on (mol%)
	OMe groups		NS-2	NS-3
Rha	1,2,3,5	4(reducing terminal)		1.6
	2,3,4	terminal		3.0
	2,3	4	0.4	2.8
Ara	2,3,5	terminal(furanosyl)	30.9	16.1
	2,4	3	4.8	4.7
	2,3	4 or 5	25.1	17.2
	2,3 2 3	3,4 or 3,5	19.6	5.9
	3	2,4	1.1	
Xyl	2,4	3	0.8	
Gal	2,3,4,6	terminal	1.2	29.4
	2,4,6	3	2.2	3.1
	2,3,6	4	1.8	5.9
	2,3,5	4	0.5	
	2,3,4	6	0.4	1.8
	2,6	3,4	1.6	1.6
	2,3	4,6	0.8	0.2
	2,4	3,6	1.1	0.3
	2	3,4,6	1.6	
Glc	2,3,4,6	terminal	0.8	3.1
	2,4,6	3	0.7	1.1
	2,3,6	4	2.2	1.7
	2,6	3,4	0.6	
	2,3	4,6	0.4	

NS-3 mainly contained terminal Araf, 4- or 5-linked Ara, and terminal Gal (Table I). NS-3 also gave traces of 4-O-acetyl-1,2,3,5-tetra-O-methyl rhamnitol (reducing terminal Rha), in addition to alditols from Rha, Ara, Gal, and Glc in various linkages. The long, neutral carbohydrate chain fraction (NS-2) contained mainly terminal Araf, and 4- or 5-linked and 3,4- or 3,5-disubstituted Ara, suggesting that NS-2 consisted mainly of branched arabinosyl chains.

The methylated oligosaccharide alditols derived from NS-3 were analysed by GLC-EI- and CI-MS. EIMS indicated that NS-3 contained at least 22 kinds of dito tetra-saccharide alditols (1N-22N, Fig. 2), and 7 oligosaccharide alditols (5N, 12N-16N, and 19N) could also be identified by CIMS (Table II). Peaks 1N-9N were eluted in the region for disaccharide alditols, 10N-16N in the region for trisaccharide alditols, and 17N-22N in the region for tetrasaccharide alditols. The most prominent peak, 5N, gave fragment ions at m/z 441 [(M + H)⁺], 219 (bA₁), and 205 (aJ₂) in CIMS (Table II), suggesting the structure hexosyl \rightarrow deoxyhexitol, and also fragment ions of the ald series at m/z 307, 275, and 133 in EIMS (Table III), suggesting the linkage hexosyl-(1 \rightarrow 4)-6-deoxyhexitol. The result of methylation analysis also suggested that 5N was Gal-(1 \rightarrow 4)-Rha-ol. Peaks 12N-16N are

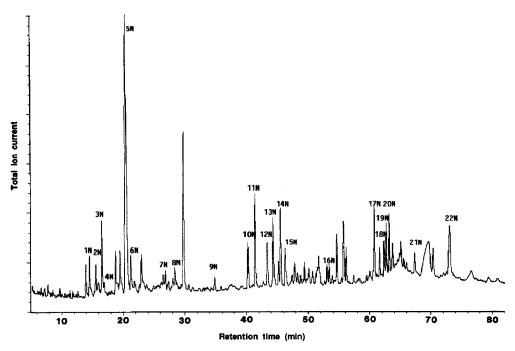


Fig. 2. Gas-liquid chromatogram of methylated oligosaccharide alditols derived from PG-1 by lithium degradation, monitored by EIMS.

proposed to represent Pen \rightarrow Hex \rightarrow deoxyHex-ol, Pen \rightarrow Pen \rightarrow Pen-ol, Hex \rightarrow $\text{Hex} \rightarrow \text{deoxyHex-ol}$, $\text{Pen} \rightarrow \text{Pen-ol}$, and $\text{Hex} \rightarrow \text{Hex} \rightarrow \text{Hex-ol}$ structures, respectively, from the protonated molecular ions and the fragment ions in CI- and EI-MS (Tables II and IV). Since NS-3 contained Ara, 13N and 15N are suggested to be Ara \rightarrow Ara \rightarrow Ara-ol isomers having different retention times. NS-3 contained of Gal and Glc as hexoses and Ara as its pentose component, therefore 12N and 14N are assumed to be Ara \rightarrow Hex \rightarrow deoxyHex-ol and Hex \rightarrow Hex \rightarrow deoxyHex-ol, respectively. CIMS and EIMS indicated that 19N had a Pen → Pen \rightarrow Pen \rightarrow Pen-ol structure, based on $(M + H)^+$ and fragment ions of the aJ_2 , abJ_2 , $abcJ_2$, and dA_1 types (Tables II and IV); thus it must be an Ara \rightarrow Ara \rightarrow Ara \rightarrow Ara-ol tetrasaccharide alditol. EIMS (Table III) indicated that 1N had a 6-deoxyHex- $(1 \rightarrow 3)$ -deoxyHex-ol structure, and since NS-3 contained terminal Rha 1N is suggested to be Rha- $(1 \rightarrow 3)$ -deoxyHex-ol. Peaks 2N and 3N are proposed to possess Ara -> deoxyHex-ol structures from the results of EIMS and methylation analysis. The deoxyhexitol of 2N is assumed to be 4-linked 6-deoxyHex-ol on the basis of the ald fragment ions (m/z 263 and 133); therefore, 2N is suggested to be Ara- $(1 \rightarrow 4)$ -Rha-ol. Peak 4N is proposed to be Rha- $(1 \rightarrow 4)$ -Rha-ol from the results of EIMS and methylation analysis. Peak 6N, like 5N, had a Hex- $(1 \rightarrow 4)$ -6deoxyHex-ol structure; however, 6N was eluted later. Since Glc is eluted later than Gal in an SP-2380 capillary column, 6N is assumed to be Glc- $(1 \rightarrow 4)$ -Rha-ol.

Diagnostic CIMS fragment ions of di- to tetra-saccharide alditols derived from PG-1 by lithium degradation TABLE II

		,					ı			
Peak	Fragment is	Fragment ions $[m/z \text{ (relative abundance)}]$	tive abund	ance)]						Structure
	(M+H)+	(M+H) ⁺ -MeOH	\mathbf{aJ}_1	aJ_2	$aJ_2OH_2^+$	\mathbf{bA}_{1}	bA_2			inferred
Disaccharide alditol					ANALYSI A PARAMETER ANALYSI AN					
SN	441	409		205	223	219	187			Hex \rightarrow deoxyHex-ol
	(10.3)	(100)		(24.1)	(20.7)	(94.8)	(100)			
			aJ_2	$aJ_2OH_2^+$	cA_1	cA_2	bcA_1	bcA_2		
Trisaccharide alditol				-						
12N	601	569	205	223	175	143	379	347		Pen \rightarrow Hex \rightarrow deoxyHex-ol
	(3.4)	(17.2)	(24.1)	(13.8)	(51.7)	(38.8)	(100)	(13.8)		
ISN	543	511	191	209	175	143				Pen → Pen → Pen-ol
	(6.7)	(5.5)	(13.8)	(12.9)	(29.3)	(100)				
14N		613	202	223	219	187				Hex \rightarrow Hex \rightarrow deoxyHex-ol
		(5.2)	(13.8)	(10.3)	(100)	(0.69)				
15N	543	511	191	209	175	143				Pen → Pen → Pen-ol
	(3.4)	(1.7)	(11.2)	(15.5)	(100)	(20.7)				
16N	675	643	235	253	219	187				Hex \rightarrow Hex \rightarrow Hex-ol
	(6.9)	(1.7)	(12.9)	(44.8)	(100)	(88.8)				
			aJ_2	abJ_2	$abcJ_2$	dA_1	dA_2	dcA_1	dcA_2	
Tetrasaccharide										
N61	703	671		369	529	175	143	335	303	Pen \rightarrow Pen \rightarrow Pen \rightarrow Pen-ol
	(1.7)	(3.4)		(48.3)	(15.5)	(60.3)	(100)	(27.6)	(0.9)	

Diagnostic EIMS fragment ions of disaccharide alditols derived from PG-1 by lithium degradation TABLE III

Peak	Fragmen	t ions $[m/z]$	/z (relative abundance)]	undance)]							Structure inferred
	aJ_1 aJ_2	aJ_2	bA_1	bA ₂	ald						
N.	265	205	189	157	275	289	307	351			Rha-(1 → 3)-deoxyHex-ol
	(34.0)	(2.8)	(33.3)	(18.4)	(1.2)	(8:0)	(1.0)	(0.4)			
73 N	265	205	175	143	133	263					Ara-(1 → 4)-Rha-ol
	(14.0)	(17.8)	(23.7)	(30.7)	(2.6)	(13.6)					
3N		205	175	143	305	337					Ara → deoxyHex-ol
		(1.2)	(10.1)	(14.4)	(0.1)	(0.2)					
Ą	265	205	189	157	245	777	321				Rha- $(1 \rightarrow 4)$ -Rha-ol
	(2.1)	(36.6)	(35.7)	(6.6)	(1.9)	(1.3)	(0.4)				
SN	265	205	219	187	133	275	307	351	381	395	$Gal-(1 \rightarrow 4)$ -Rha-ol
	(16.1)	(47.3)	(12.4)	(32.6)	(10.3)	(4.8)	(1.4)	(0.1)	(0.1)	(0.1)	
N ₀	265	202	219	187	133	275	307				Glc- $(1 \rightarrow 4)$ -Rha-ol
	(3.2)	(6.79)	(13.1)	(40.1)	(6.6)	(2.1)	(0.7)				
X.	295	235	219	187	349	381					Hex → Hex-ol
	(14.0)	(47.9)	(16.1)	(32.0)	(12.0)	(2.7)					
N8	295	235	219	187	337	349	381				Hex → Hex-ol
	(13.7)	(51.8)	(14.2)	(32.0)	(1.2)	(2.7)	(1.3)				
N _C	295	235	219	187	337						Hex → Hex-ol
	(2.1)	(28.6)	(7.5)	(24.3)	(3.4)						

Diagnostic EIMS fragment ions of tri- and tetra-saccharide alditols derived from PG-1 by lithium degradation

TABLE IV

Peak	Fragmer	It ions $[m/z]$	Fragment ions $[m/z \text{ (relative abundance)}]$	dance)]					Structure inferred
	aJ ₁	aJ ₂	cA ₁	cA ₂	abJ_1	abJ ₂	cbA ₁	cbA ₂	
Trisaccharide							The state of the s		
10N	265	205	175	143		365	335	303	Ara → Ara → deoxvHex-ol
	(2.9)	(8.7)	(2.4)	(37.3)		(0.5)	(1.2)	(0.3)	
NII		205	175	143		365		303	Ara → Ara → deoxyHex-ol
		(4.2)	(10.8)	(17.2)		(0.1)		(0.1)	
12N		205	175	143		409	379	347	Ara \rightarrow Hex \rightarrow deoxyHex-ol
		(23.0)	(50.2)	(77.3)		(0.9)	(9.5)	(0.9)	
13N	251	191	175	143	411	351	335	303	Ara → Ara → Ara-ol
	(0.2)	(4.9)	(34.7)	(8.06)	(1.2)	(0.5)	(2.5)	(2.0)	
14N	265	205	219	187	469	409	423	391	Hex \rightarrow Hex \rightarrow deoxyHex-ol
	(20.8)	(9.69)	(22.6)	(20.0)	(2.4)	(1.3)	(1.1)	(0.0)	
15N	251	191	175	143	411	351	335	303	Ara → Ara → Ara-ol
	(9.1)	(9:9)	(12.6)	(17.2)	(0.4)	(0.3)	(1.2)	(0.2)	
16N	295	235	219	187			423	391	Hex → Hex → Hex-ol
	(1.6)	(30.7)	(42.0)	(69.5)			(3.7)	(2.1)	
	\mathbf{aJ}_1	aJ ₂	dA_1	dA_2	abJ_1	abJ ₂	dcA_1	dcA ₂	
Tetrasaccharide									
alditol									
17.		205	175	143		365	335	303	Ara \rightarrow Ara \rightarrow Ara \rightarrow deoxyHex-ol
		(3.2)	(21.9)	(61.1)		(1.5)	(2.8)	(1.1)	
18N		205	175	143	412	365	335	303	Ara → Ara → Ara → deoxyHex-ol
		(4.8)	(14.2)	(20.1)	(0.4)	(0.8)	(0.8)	(0.2)	
N61		191	175	143	412	365	335	303	Ara → Ara → Ara → Ara-ol
		(4.4)	(25.5)	(32.0)	(0.3)	(0.8)	(0.3)	(1.4)	
20N	265	202	175	143		365	335		Ara \rightarrow Ara \rightarrow Ara \rightarrow deoxyHex-ol
	(0.8)	(19.7)	(44.3)	(21.6)		(0.8)	(7.8)		
21N	251	191	175	143		365	335	303	Ara → Ara → Ara → Ara-ol
	(6.0)	(8:0)	(13.5)	(68.1)		(2.0)	(4.2)	(1.0)	
22N	265	202	219	187	469		423		Hex \rightarrow Hex \rightarrow Hex \rightarrow deoxyHex-ol
	(14.3)	(29.0)	(35.2)	(100)	(4.25)		(2.7)		

Peaks 7N, 8N, and 9N are proposed to have Hex \rightarrow Hex-ol structures; however their component sugars and linkages could not be deduced. From the results of EIMS (Table IV) and methylation analysis data peaks 10N and 11N are proposed as Ara \rightarrow Ara \rightarrow deoxyHex-ols having different retention times. EIMS suggested that 17N, 18N, and 20N possessed Pen \rightarrow Pen \rightarrow Pen \rightarrow deoxyHex-ol structures having different retention times (Table IV), and they are assumed to be Ara \rightarrow Ara \rightarrow Ara \rightarrow deoxyHex-ol from the results of methylation analysis. Peak 21N gave fragment ions in EIMS similar to those from 19N, therefore 19N is assumed to be an Ara \rightarrow Ara \rightarrow Ara \rightarrow Ara \rightarrow Ara-ol different from 21N. Peak 22N is suggested to be Hex \rightarrow Hex \rightarrow Hex \rightarrow deoxyHex-ol from the results of EIMS.

Redigestion of PG-2 and PG-3 by endo- α - $(1 \rightarrow 4)$ -polygalacturonase.—It was found that the two endo- α - $(1 \rightarrow 4)$ -polygalacturonase-resistant fractions (PG-2 and PG-3) contained similar unusual component sugars, such as 2-Me-Fuc, 2-Me-Xyl, AceA, and Kdo. Accordingly, PG-2 and PG-3 were remixed and redigested with endo- α - $(1 \rightarrow 4)$ -polygalacturonase after deesterification. The products when chromatographed on Bio-Gel P-10 gave two fractions (PG-2,3-1 and PG-2,3-2), which were eluted in the void volume and near the void volume, respectively (Fig. 3A). When PG-2,3-1 and PG-2,3-2 were each rechromatographed on the same column, PG-1' and PG-2' were obtained as single peaks (Figs. 3B and C). PG-1' had about the same component sugars (Rha, Ara, Glc, Gal, and GalA, with small amounts of Fuc, Xyl, and Man) as PG-1, whereas PG-2' contained 2-Me-Fuc, 2-Me-Xyl, and Api in addition to Rha, Fuc, Ara, Xyl, and Gal, and so were similar to PG-2 and PG-3 (Table V). GLC-EIMS showed that the deuterium-labelled additol acetates derived from PG-2' contained peaks due to derivatives of Kdo (m/z 124, 128, 132, 204, and 234) and Dha (m/z) 132, 156, 204, 234, and 276). Therefore, it is suggested that Bupleuran 2IIc is composed of 2 kinds of regions (PG-1 and PG-2') resistant to endo- α - $(1 \rightarrow 4)$ -polygalacturonase, in addition to a partially methylesterified and branched $(1 \rightarrow 4)$ - α -galacturonan region.

Analysis of PG-2'.—Methylation analysis indicated that PG-2' mainly contained 4-linked GalA in addition to 3,4- and 2,4-disubstituted GalA, and Rha, Ara, Gal, Glc, and Man in various linkages (data not shown). PG-2' was then degraded by lithium treatment.

Methylation analysis of the resulting neutral oligosaccharide alditols showed that 1,5-di-OAc-2,3,4-tri-OMe-rhamnitol, 1,5-di-OAc-2,3,5-tri-OMe-arabinitol, and 1,5-di-OAc-2,3,4,6-tetra-OMe-galactitol were the major alditol acetates, suggesting that PG-2' mainly contained terminal Rha, Ara f, and Gal as neutral sugars (Table VI). PG-2' is also suggested to contain Ara p, Xyl, and Fuc as nonreducing terminal residues, and 4-linked Rha, 3-linked Rha, 3-linked Fuc, 3,4-disubstituted Fuc, 3'-linked Api, 3-linked Gal, and 2,4-disubstituted Gal. When the methylated neutral oligosaccharide alditols were analysed by GLC-EIMS, five kinds of peaks (PG-2'a-PG-2'e) due to oligosaccharide alditols were detected (Fig. 4), but the structural unit of the oligosaccharide alditols could not be identified by GLC-CIMS, because the sensitivity of the method was lower than that of EIMS.

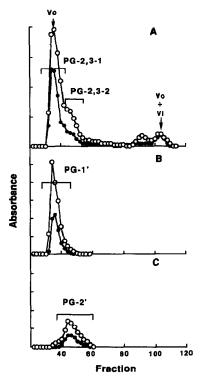


Fig. 3. Gel filtration on Bio-Gel P-10 of (A) products from deesterified PG-2 and -3 by digestion with endo- α -(1 \rightarrow 4)-polygalacturonase, (B) PG-2,3-1 from (A), and (C) PG-2,3-2 from (A): •, carbohydrate (490 nm); \circ , uronic acid (520 nm); V_0 , void volume; V_1 , internal volume.

PG-2'a-PG-2'c were eluted in the region for disaccharide alditols, PG-2'd in the region for trisaccharide alditols, and PG-2'e in the region for tetrasaccharide alditols. EIMS indicated that the most abundant oligosaccharide alditol (PG-2'e) gave intense ions at m/z 143 (dA₂), 175 (dA₁), 191 (aJ₂), 251 (aJ₁), 317 (cdA₂), 349 (cdA₁), and 411 (abJ₀), suggesting that it had a Pen \rightarrow 6-deoxyHex \rightarrow 6-

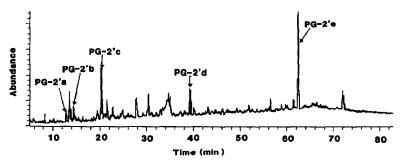


Fig. 4. Total ion chromatogram (EIMS) of permethylated oligosaccharide alditols derived from PG-2' by lithium degradation.

TABLE V
Component sugars of PG-2' from Bupleuran 2IIc

Sugar a	Molar ratios			
	PG-2'	PG-2 ^b	PG-3 b	
Rha	1.8	2.7	3.1	
Fuc	0.4	0.5	0.9	
Ara	1.4	1.1	2.8	
Xyl	0.2	0.1	0.2	
Man	0.1	0.1	0.1	
Gal	1.0	1.0	1.0	
Glc	0.2	0.4	0.2	
2-Me-Fuc	0.3	0.3	0.3	
2-Me-Xyl	0.2	0.1	0.4	
Api	0.3	0.2	0.4	
GalA	n.d. ^c	4.3	5.9	
GlcA	n.d.	1.0	1.0	
AceA	n.d.	0.2	0.1	
Kdo	$+$ d	+	+	
Dha	+	n.d.	n.d.	

^a Neutral sugar, uronic acid (GalA, GlcA, and AceA), and ketose (Dha and Kdo) were analysed separately, therefore, the respective molar ratios could not be compared. ^b Reported¹ by Yamada et al. ^c Not determined. ^d Molar ratios of Kdo and Dha were not calculated; + indicates detected.

TABLE VI

Methylation analysis of the products obtained from PG-2' by lithium degradation

Residue	Positions of OMe groups	Linkages	Composition (mol%)
Rha	2,3,4	terminal	20.3
	3,4	2	4.2
	2,4	3	3.0
	2,3	4	6.7
	2	3,4	1.7
	4 3	2,3	1.1
	3	2,4	3.7
Fuc	2,3,4	terminal	6.0
	2,4	3	6.6
	2	3,4	1.6
	4	2,3	0.9
Ara	2,3,5	terminal(furanosyl)	13.1
	2,3,4	terminal(pyranosyl)	6.4
Xyl	2,3,4	terminal	4.2
	2,3	4 or 5	1.3
Api	2,3	3′	6.0
Gal	2,3,4,6	terminal	8.3
	2,4,6	3	1.9
	2,6	3,4	0.5
	3,6	2,4	2.6

Diagnostic EIMS fragment ions of di- to tetra-saccharide alditols derived from PG-2' by lithium degradation TABLE VII

Peak	Fragment		ions $[m/z$ (relative abundance)]	abundance)	ons [m / z (relative abundance)]			,	Structure inferred
	\mathbf{aJ}_1	aJ_2	bA_1	bA ₂	ald				
Disaccharide									
alditol DC 2/2	370	300	35.5	57	£00				,II
r 2-5.3	6 (4.6)	202 (4.9)	(22.8)	(31.1)	33/ (0.0)				Fen → deoxyhex-ol
PG-2'b	265	205	189	157					6-deoxyHex → deoxyHex-ol
	(15.8)	(4.3)	(21.7)	(13.2)					
PG-2'c	265	202	219	187	305	115			Hex- $(1 \rightarrow 2)$ -6-deoxyHex-ol
	(2.6)	(28.0)	(2.6)	(22.3)	(0.7)	(18.0)			and
					307	133			Hex- $(1 \rightarrow 4)$ -6-deoxyHex-ol
					(0.7)	(0.0)			
	aJ_1	aJ_2	cA_1	cA ₂	abJ ₁	abJ ₂	bcA ₁	bcA ₂	
Trisaccharide alditol					The second secon				
PG-2'd	265	205	175	143		379	349	317	Pen → 6-deoxyHex → deoxyHex-ol
	(1.0)	(7.2)	(48.5)	(100)		(2.0)	(2.4)	(2.5)	
	aJ_1	aJ_2	dA_1	dA ₂	abJ_0	abJ ₂	cdA_1	cdA ₂	
Tetrasaccharide alditol									
PG-2'e	251	191	175	143	411	365	349	317	Pen \rightarrow 6-deoxyHex \rightarrow 6-deoxyHex \rightarrow Pen-ol
	(3.5)	(32.2)	(61.9)	(100)	(10.1)	(3.0)	(1.7)	(2.7)	

deoxyHex \rightarrow Pen-ol structure (Table VII). It was also shown that PG-2' contained four kinds of neutral disaccharide units and one neutral trisaccharide unit, on the basis of the finding that PG-2'c was apparently a mixture of Hex- $(1 \rightarrow 2)$ -6-deoxyHex-ol and Hex- $(1 \rightarrow 4)$ -6-deoxyHex-ol (Table VII).

Distribution of unusual component sugars such as 2-Me-Fuc, 2-Me-Xyl, and Api in Bupleuran 2IIc.—Bupleuran 2IIc was eluted as essentially a single peak on gel filtration on Sepharose CL-6B, and the neutral sugars co-eluted with the uronic acid (Fig. 5A). When the fractions from the gel filtration were analysed by HPLC

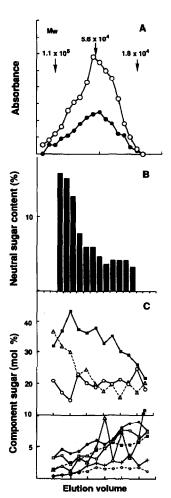


Fig. 5. A, Gel filtration of Bupleuran 2IIc on Sepharose CL-6B: •, carbohydrate (490 nm); ○, uronic acid (520 nm). B, Neutral sugar content of each fraction from A. C, Mol% of component sugars in each fraction from A. The fractions were lyophilised, then 1 mg of each sample was hydrolysed, and derivatised to alditol acetates. The component sugars were analysed by GLC-MS as described in the Experimental. Xyl and Api were not well separated in this analysis: ■ — ■, Rha; △-----△, Ara; ○ — ○, Gal; □ — □, Glc; • — •, Xyl (Api); ■-----■, Fuc; △ — △, Man; + — +, 2-Me-Xyl; ○-----○, 2-Me-Fuc.

on Asahi-pak GS-510 + GS-320, each had a different molecular weight $(1.1 \times 10^5 - 1.8 \times 10^4)$. These results indicate that Bupleuran 2IIc has a wide distribution of molecular weights (data not shown). The neutral sugar content of each fraction increased with increasing molecular weight (Fig. 5B). Component sugar analysis of each fraction showed that all contained not only Rha, Ara, Gal, and GalA, but also 2-Me-Fuc, 2-Me-Xyl, and Api (Fig. 5C).

DISCUSSION

An acidic polysaccharide fraction (BR-2) from B. falcatum, which contains the two antiulcer pectins^{2,3} Bupleuran 2IIb and 2IIc, significantly protected²⁰ against a wide variety of experimental gastric lesions such as HCl-EtOH-, EtOH-, and water immersion stress-induced gastric lesions in mice and pylorus-ligated ulcer in rats. Although polygalacturonic acid from orange moderately inhibited the formation of HCl-EtOH-induced gastric lesions in ICR mice, methyl-esterified polygalacturonic acid did not show antiulcer activity (Table VIII). However, methylesterified BR-2, which contains Bupleuran 2IIb and 2IIc, still retained significant antiulcer activity (Table VIII). Therefore, it was strongly suggested that the overall structure of Bupleuran 2IIc, including the endo- α - $(1 \rightarrow 4)$ -polygalacturonaseresistant parts, is important for the expression of antiulcer activity. The present study concluded that Bupleuran 2IIc consists of two endopolygalacturonase-resistant regions (PG-1 and PG-2') and a polygalacturonan region. PG-1 has been suggested to have a rhamnogalacturonan core in which some of the Rha is substituted with neutral sugars or with 4-linked GalA at the position 4, and was proposed¹ to be a "ramified" region.

The present lithium-mediated degradation of PG-1 suggested that PG-1 contains small proportions of long, branched arabinofuranosyl chains (NS-2) and large

TABLE VIII	
Effect of methyl esterification on antiulcer activity of BR-2 and polygalacturonic acid	t

Treatment	Dose	Number of animals	Lesion index a	Percent inhibition "
Control		10	24.7 ± 3.61	
BR-2 ^b	100	8	9.8 ± 1.98 c	60
Methyl-esterified ^d BR-2	100	8	12.4 ± 2.16 °	50
Polygalacturonic acid ^f	100	8	13.5 ± 3.22 °	45
Methyl-esterified ^d polygalacturonic acid	100	8	20.8 ± 5.62	16

^a Antiulcer activity was measured using the HCl-EtOH induced gastric lesion model on ICR mice as described² previously. ^b Acidic polysaccharide fraction from *B. falcatum* containing Bupleuran 2IIb and 2IIc. ^c p < 0.01. ^d GalA residues in the polysaccharides were esterified with diazomethane as described previously²¹. ^e p < 0.05. ^f From oranges.

TABLE IX

Proposed structures of neutral carbohydrate side chains in the "ramified" region of Bupleuran 2IIc

4-GalA-(1 -	2)-Rha- $(1 \rightarrow 4)$ -GalA- $(1 \rightarrow 2)$ -Rha- $(1 \rightarrow 4)$	4)-GalA-(1 → 2)-Rha-(1 →	
	4	4	
	R ¹	R ² → 4)-GalA	
	Neutral carbohydrate	Oligosaccharide	
	side chains	alditols a	
R^1	Ara	2N	
	Rha	4N	
	Gal	5N	
	Glc	6N	
	Ara → Ara	10N, 11N	
	Ara → Hex	12N	
	$Hex \rightarrow Hex$	14N	
	Ara → Ara → Ara	17N, 18N, 20N	
	$Hex \rightarrow Hex \rightarrow Hex$	22N	
\mathbb{R}^2	Ara	Ara-ol-1-d ^b	
	Gal	Gal-ol-1-d b	
	Glc	Glc-ol-1-d b	
	$Hex \rightarrow Hex$	7N, 8N, 9N	
	Ara → Ara → Ara	13N, 15N	
	$Hex \rightarrow Hex \rightarrow Hex$	16N	
	Ara → Ara → Ara → Ara	19N, 21N	

^a Neutral oligosaccharide alditols derived from PG-1 by lithium degradation (Tables II-IV). ^b Alditols liberated from PG-1 by base-catalysed β -elimination in the presence of NaBD₄.

proportions of short, neutral oligosaccharide chains (NS-3) consisting of at least 22 kinds of arabinosyl, hexosyl, and heteroglycosyl units of dp < 5. Lithium-mediated degradation¹⁰ is useful for the release of neutral carbohydrate chains attached to position 4 or 2 of GalA in the polysaccharide, but 3-linked GalA cannot cleave, and some of it is converted to 2-deoxyhexitols. The previous results suggested that PG-1 contained 3,4-disubstituted GalA (4.1 mol%) in addition to terminal, 4-linked, and 2,4-disubstituted GalA (3.3, 19.0, and 2.3 mol\%, respectively), therefore a small portion of the deoxyhexitols in the released oligosaccharide alditols might have originated from 3-linked GalA during the lithium degradation. The content of 3,4-disubstituted GalA and the results of EIMS analysis, however, suggest that most of the deoxyHex-ol in the neutral oligosaccharide alditols is due to Rha. It was also assumed that many of the side chains in NS-3 are directly attached to position 4 of 2,4-disubstituted Rha in the rhamnogalacturonan core (Table IX, R¹). However, eight kinds of neutral oligosaccharide alditols (7N-9N, 13N, 15N, 16N, 19N, and 21N, Tables III and IV) do not have deoxyHex-ol at their reducing terminals. It has been reported¹ that much of Rha in the rhamnogalacturonan core is also substituted with 4-linked GalA, therefore these oligosaccharides may be assumed to attach to position 4 of GalA in the side chains (Table IX, R²). During the present study we also analysed neutral carbohydrate chains in PG-1 by base-catalysed β -elimination²² in the presence of NaBD₄, and Ara-ol-1-d, Gal-ol1-d, and Glc-ol-1-d were detected in addition to neutral oligosaccharide alditols similar to those liberated by the lithium degradation (data not shown). This result suggests that PG-1 contains monosaccharides such as Ara, Gal, and Glc attached to position 4 of GalA in the side chains (Table IX, R²).

Purified PG-2' contains several unusual component sugars, such as 2-Me-Fuc, 2-Me-Xyl, Api, AceA, and Kdo; Dha was also detected in the present analyses. These unusual sugars have previously been found in a plant polysaccharide. RG-II, which has been isolated from the walls of suspension-cultured sycamore cells²³, rice cell walls²⁴, and Douglas fir ²⁵ by digestion with endopolygalacturonase, and from Pectinol AC²⁶. Stevenson et al. reported⁹ that lithium degradation of RG-II from sycamore cells gave α -Xyl- $(1 \rightarrow 3)$ - α -Fuc- $(1 \rightarrow 4)$ - β -Rha- $(1 \rightarrow 3')$ -Api-ol as a major product. The results of lithium degradation and methylation analysis suggest that PG-2' also contains the same tetrasaccharide fragment.

HPLC analysis indicated that Bupleuran 2IIc is microheterogeneous in terms of molecular weight. However, component sugar analysis indicated that 2-Me-Fuc, 2-Me-Xyl, and Api, which were identified as component sugars of RG-II, were contained in all fractions obtained by gel filtration, a result which strongly suggests that the RG-II-like region is distributed uniformly in all the molecules, in spite of the microheterogeneity of Bupleuran 2IIc. Stevenson et al. proposed⁹ that the backbone of RG-II is composed of at least seven 4-linked α -D-GalA units, and that a variety of oligosaccharide chains are attached to the backbone. The fact that PG-2' also consists mainly of 4-linked GalA in addition to 2,4- or 3,4-disubstituted GalA strongly suggests that the "ramified" region and the RG-II-like region may be combined through 4-linked α -galacturonan in Bupleuran 2IIc.

We have recently reported²⁷ the presence of an RG-II-like region in the purified mitogenic and anticomplementary pectins isolated from the roots of *Glycyrrhiza uralensis* Fisch *et* D.C. This finding and the present observation suggest that most pectins, regardless of source, may contain a region having an RG-II-like structure in addition to a "ramified" region and a polygalacturonan region. However, conclusions regarding the generality of the presence of RG-II-like regions must await further analyses of biologically active and inactive pectins. RG-II fractions isolated²³⁻³⁶ from several different plant cell walls and the present PG-2' are composed of similar sugars²⁵, but their molar ratios differ²⁶ from each other. RG-II from Douglas Fir²⁶ and PG-2' from Bupleuran 2IIc contained Man as one of the component sugars, however RG-II from sycamore culture cells did not contain²³ this sugar. These facts suggest that the detailed structures of the RG-II-like regions may differ in pectins from different sources.

Further structural analysis and studies on the biological activity of PG-2' are now in progress.

ACKNOWLEDGMENTS

We thank Professor Alan Darvill (Complex Carbohydrate Research Center, University of Georgia) for sending MS data on partially methylated apiitol acetate in RG-II, Ms. Akiko Nakagawa and Ms. Chikako Sakabe (Kitasato University) for their assistance with GLC-CIMS, and Mr. X.-B. Sun for technical assistance. A part of this work was supported by funds from Tsumura & Co. (Japan).

REFERENCES

- 1 H. Yamada, M. Hirano, and H. Kiyohara, Carbohydr. Res., 219 (1991) 173-192.
- 2 H. Yamada, X.-B. Sun, T. Matsumoto, K.-S. Ra, M. Hirano, and H. Kiyohara, *Planta Med.*, 57 (1991) 555-559.
- 3 H. Yamada, K.-S. Ra, H. Kiyohara, J.-C. Cyong, and Y. Otsuka, *Carbohydr. Res.*, 189 (1989) 209-226.
- 4 J.F. Thibault and C. Mercier, J. Solid-Phase Biochem., 2 (1977) 293-304.
- 5 M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Anal. Chem., 28 (1956) 350-356.
- 6 N. Blumenkranz and G. Asboe-Hansen, Anal. Biochem., 54 (1973) 484-489.
- 7 W.E. Trevelyan, D.P. Procter, and J.S. Harrison, Nature (London), 166 (1950) 444-445.
- 8 T.M. Jones and P. Albersheim, Plant Physiol., 49 (1972) 926-936.
- 9 T.T. Stevenson, A.G. Darvill, and P. Albersheim, Carbohydr. Res., 179 (1988) 269-288.
- 10 J.M. Lau, M. McNeil, A.G. Darvill, and P. Albersheim, Carbohydr. Res., 168 (1987) 219-243.
- 11 S. Hakomori, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 12 M. McNeil, A.G. Darvill, and P. Albersheim, Plant Physiol., 66 (1980) 1128-1134.
- 13 H. Rauvala, Carbohydr. Res., 72 (1979) 257-260.
- 14 T.J. Waeghe, A.G. Darvill, M. McNeil, and P. Albersheim, Carbohydr. Res., 123 (1983) 281-304.
- 15 G.G.S. Dutton, K.L. Mackie, A.V. Savage, and M.D. Stephenson, *Carbohydr. Res.*, 66 (1978) 125-131.
- 16 D.P. Sweet, R.H. Shapiro, and P. Albersheim, Carbohydr. Res., 40 (1975) 217-225.
- 17 O.S. Chizhov, V.I. Kadentsev, A.A. Solov'yov, P.F. Levonowich, and R.C. Dougherty, J. Org. Chem., 41 (1976) 3425-3428.
- 18 M. McNeil, Carbohydr. Res., 123 (1983) 31-40.
- 19 N.K. Kochetkov and O.S. Chizhov, Adv. Carbohydr. Chem., 21 (1966) 39-93.
- 20 X.-B. Sun, T. Matsumoto, and H. Yamada, J. Pharm. Pharmacol., 43 (1991) 699-704.
- 21 Y. Inoue, A. Yamamoto, and K. Nagasawa, Carbohydr. Res., 161 (1987) 75-90.
- 22 H. Kiyohara and H. Yamada, Carbohydr. Res., 187 (1989) 117-129.
- 23 A.G. Darvill, M. McNeil, and P. Albersheim, *Plant. Physiol.*, 62 (1978) 418-422.
- 24 J.R. Thomas, A.G. Darvill, and P. Albersheim, Carbohydr. Res., 185 (1989) 261-277.
- 25 J.R. Thomas, M. McNeil, A.G. Darvill, and P. Albersheim, Plant Physiol., 83 (1987) 659-671.
- 26 W.S. York, A.G. Darvill, M. McNeil, and P. Albersheim, Carbohydr. Res., 138 (1985) 109-126.
- 27 J.-F. Zhao, H. Kiyohara, H. Yamada, N. Takemoto, and H. Kawamura, Carbohydr. Res., 219 (1991) 149-172.